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Abstract: The adjustment of multiple criteria in hit-to-lead identification and lead optimization is a major advance in 

drug discovery. Thus, the development of approaches able to handle additional criteria for the early simultaneous 

treatment of the most important properties determining the pharmaceutical profile of a drug candidate is an 

emergent issue in this area. In this paper, we review a desirability-based multi-objective QSAR method allowing 

the joint handling of multiple properties of interest in drug discovery: the MOOP-DESIRE methodology. This 

methodology adapts desirability theory concepts allowing the holistic modeling of the many and conflicting biological 

properties determining the therapeutic utility of a drug candidate. Here we survey their suitability for key tasks 

involving the use of chemoinformatics methods in medicinal chemistry and drug discovery.  
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INTRODUCTION 

 Development of a successful drug is a complex and 
lengthy process, and failure at the development stage is 
caused by multiple factors, such as lack of efficacy, poor 
bioavailability, and toxicity [1]. Although “Costs of Goods” 
has been claimed as one of the major reasons for the end of 
a research & development (R&D) project [2] one cannot 
disregard the idea that toxicity and/or pharmacokinetics 
profiles of the clinical candidates are still decisive causes of 
failure in drug development process [3-6]. Roughly 75% of 
the total costs during the development of a drug is attributed 
to poor pharmacokinetics or to toxicity [7]. 

 The importance and possibility of jointly considering 
the multiple aspects of drug action was recognized and 
suggested years ago by Mayer and Van de Waterbeemd [8].  

 As a possible way to achieve this goal, they suggest a 
stepwise multiple QSAR (MUQSAR) technique. In 
MUQSAR technique each step in drug action should be 
analyzed by using a quantitative method [i.e.: quantitative 
structure-activity/property/biotransformation/toxicity 
relationships (QSAR/QSPR/QSBR/QSTR)], thus permitting 
to fully conceive an “overall QSAR”: OverallQSAR = 
f(QSAR, QSPR, QSBR, QSTR) [8].  

 Not without advising that some practical problems 
surely would have to be tackled, more than twenty years 
ago Mayer and Van de Waterbeemd were already confident 
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about the feasibility of this approach and that the 
information finally obtained would worth the effort [8].  

 Improvement of the profile of a drug candidate requires 
finding the best compromise between various, often competing 
objectives, which shows the multi-objective nature of the drug 
discovery and development process. But even when a 
potent candidate has been identified, the pharmaceutical 
industry routinely has tried to optimize the remaining 
objectives one at a time, which often results in expensive 
and time-consuming cycles of trial and error [3, 6, 9]. 

 The adjustment of the multiple criteria in hit-to-lead 
identification and lead optimization is considered to be a 
major advance in the rational drug discovery process. The 
aim of this paradigm shift is the prompt identification and 
elimination of candidate molecules that are unlikely to 
survive later stages of discovery and development. In turn, 
this new approach will reduce clinical attrition, and as a 
consequence, the overall cost of the process [3, 10]. 

 All these arguments put forward the need for approaches 
able to early integrate drug- or lead-likeness, toxicity and 
bioavailability criteria in the drug discovery phase as an 
emergent issue [3, 6]. That is, methods that can handle 
additional criteria for the early simultaneous treatment of 
the most important properties, potency, safety, and 
bioavailability, determining the pharmaceutical profile of a 
drug candidate [11-19]. 

 In recent years, the drug discovery/development process 
has been gaining in efficiency and rationality because of the 
continuous progress and application of chemoinformatics 
methods [9]. In particular, the QSAR paradigm has long 
been of interest in the drug design process [20]. 
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 Yet standard chemoinformatics approaches usually 
ignore multiple objectives and optimize each biological 
property sequentially [8, 21-31]. Nevertheless, some efforts 
have been made recently toward unified approaches capable 
of modeling multiple pharmacological, pharmacokinetic, or 
toxicological properties onto a single QSAR equation [32-
36]. 

 Multi-objective optimization (MOOP) methods 
introduce a new philosophy to obtain optimality on the 
basis of compromises among the various objectives. These 
methods aim at hitting the global optimal solution by 
optimization of several dependent properties simultaneously. 
The major benefit of MOOP methods is that local optima, 
corresponding to one objective can be avoided by taking 
into account the whole spectra of objectives, thus leading to 
a more efficient overall process [37]. 

 Several applications of MOOP methods in the field of 
drug development have appeared lately, ranging from 
substructure mining [38-40] to docking [41, 42], including 
inverse QSPR [43, 44] and QSAR [37]. Most of these 
MOOP applications have been based on the following 
approaches: weighted-sum-of-objective-functions (WSOF) 
and Pareto-based methods [45]. An excellent review on the 
subject has been published by Nicolaou et al. [37]. 

 Despite the availability of numerous optimization 
objectives, MOOP techniques have only recently been 
applied to the building of QSAR models [12, 14, 46, 47]. 
Actually, very few reports exist of the application of MOOP 
methods to QSAR, and even scarcer are the reports 
concerning the simultaneous optimization of competing 
objectives directly related with the definitive pharmaceutical 
profile of drugs, such as therapeutic efficacy, bioavailability, 
and/or toxicity. 

 Classic QSAR approaches usually ignore the multi-
objective nature of the problem focusing on the evaluation 
of each single property as they became available during the 
drug discovery process [37]. So, an approach offering a 
simultaneous study of several biological properties 
determinants for a specific therapeutic activity is considered 
a very attractive option in computational medicinal 
chemistry. 

 In this sense, desirability functions (DF) are well-known 
multi-criteria decision-making methods [48, 49]. This 
approach has been extensively employed in several fields 
[50-61]. However, despite of perfectly fit with the drug 
development problem, reports of computational medicinal 
chemistry applications are at present very limited.  

 In the present paper, we review a MOOP methodology 
based on Derringer’s desirability functions [49] that allows 
global QSAR studies to be run jointly, considering multiple 
properties of interest to the drug design process as well as 
their suitability for key tasks involving the use of 
chemoinformatics methods in drug discovery. 

MOOP-DESIRE METHODOLOGY 

 Improvement of the profile of a molecule for the drug 
discovery and development process requires the 
simultaneous optimization of several different objectives. 

The ideal drug should have the highest therapeutic efficacy 
and bioavailability, as well as the lowest toxicity.  

 Because of the conflicting relationship among the 
aforementioned properties, such a drug is almost 
unattainable, and if possible, it is an extremely difficult, 
expensive, and time-consuming task. However, finding the 
best compromise between such objectives is an accessible 
and more realistic target (see Fig. (1)). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Graphic representation of the compromise between 

therapeutic efficacy (potency), bioavailability (ADME properties) 

and toxicity (safety) required to reach a successful drug. 
 
 In this paper, we describe a multi-objective optimization 
methodology based on the desirability estimation of several 
interrelated responses (MOOP-DESIRE) as a tool to 
perform global QSAR studies, considering simultaneously 
the pharmacological, toxicological, and/or pharmacokinetic 
profiles of a set of drug candidates [13, 15]. The MOOP-
DESIRE methodology is intended to find the most desirable 
solution that optimizes a multi-objective problem by using 
the Derringer’s desirability function [62, 63], specifically 
addressed to confer rationality to the drug development 
process. 

 The process of simultaneous optimization of multiple 
properties of a drug candidate can be described as follows. 
From now on, the terms “response variable” and 
“independent variables” should be understood as any 
property to be optimized and any set of molecular descriptors 
(MDs) used to model each property, respectively. 

Phase I: Desirability-Based multi-Objective Optimization 

Prediction Model Setup  

 Each response variable (Yi) is related to the n 
independent variables (Xn) by an unknown functional 
relationship, often (but not necessarily) approximated by a 
linear function. Each predicted response ( i) is then 
estimated by a least-squares regression technique. In some 
cases, the developed prediction model for some responses 
may share the same independent variables of other 
response´s prediction models but with different coefficients. 
In this atypical case, attaining the best compromise among 
the responses turns out to be simpler. Actually, because of 
the multiplicity of factors involved in the overall 
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pharmaceutical profile of a molecule, one should not expect 
that the same subset of independent variables can optimally 
explain different types of biological properties (especially 
conflicting properties like potency and toxicity). However, 
in the latter case, there is still a way to maximize the 
desirability of several biological properties, that is, to setup 
a global prediction model where the predicted values of 
each response are fitted to a linear function using the whole 
subset of independent variables employed in modeling the k 
original responses. Here, the independent variables used in 
computing the predicted values for the original responses 
will remain the same. Independent variables not used in 
computing the predicted values for the original responses 
will be set to zero. 

Desirability Function Selection and Evaluation  

 For each predicted response i, a desirability function di 

assigns values between 0 and 1 to the possible values of i. 
This transformed response di, can have many different 
shapes. Regardless of the shape, di= 0 represents a 
completely undesirable value of i, and di= 1 represents a 
completely desirable or ideal response value. The individual 
desirabilities are then combined using the geometric mean, 
which gives the overall desirability D: 

 
k

kdddD

1

21 )...(=
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with k denoting the number of responses. 

 This single value of D gives the overall assessment of 
the desirability of the combined response levels. Clearly, 
the range of D will fall in the interval [0, 1] and will 
increase as the balance of the properties becomes more 
favorable. Notice that if for any response di= 0, then the 
overall desirability is zero. Thus, the desirability maximum 
will be at the levels of the independent variables that 
simultaneously produce the maximum desirability, given 
the original models used for predicting each original 
response. 

 Depending on whether a particular response is to be 
maximized, minimized, or assigned a target value, different 
desirability functions can be used. Here, we used the 
desirability functions proposed by Derringer and Suich [49]. 

 Let Li, Ui, and Ti be the lower, upper, and target values, 
respectively, that are desired for the response i, with Li  Ti 

 Ui. 

 If a response is of the target best kind, then its 
individual desirability function is defined as: 
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 If a response is to be maximized instead, its individual 
desirability function is defined as: 
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 In this case, Ti is interpreted as a large enough value for 
the response, which can be Ui. 

 Finally, if one wants to minimize a response, one might 
use: 
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Here, Ti denotes a small enough value for the response, 
which can be Li. 

 Moreover, the exponents s and t determine how 
important is to hit the target value Ti. For s =t = 1,the 
desirability function increases linearly toward Ti. Large 
values for s and t should be selected if it is very desirable 
that the value of i be close to Ti or increase rapidly above 
Li. On the other hand, small values of s and t should be 
chosen if almost any value of i above Li and below Ui are 
acceptable or if having values of i considerably above Li 

are not of critical importance [49]. 

 In this way, one may predict the overall desirability for 
each drug candidate determined by k responses, which in 
turn are at the same time determined by a specific set of 
independent variables. However, as the Derringer’s 
desirability function is built using the estimated responses 

i, there is no way to know how reliable the predicted D 
value of each candidate is. 

 To overcome this shortcoming, was proposed a 
statistical parameter, the overall desirability’s 
determination coefficient (R

2
D), which measures the effect 

of the set of independent variables Xn in reduction of the 
uncertainty when predicting the D values. R

2
D is computed 

by using the observed DYi (calculated from Yi) and the 
predicted D i (calculated from i) overall desirability values 
instead of using directly the measured (Yi) and predicted ( i) 
response values. External and cross validations can be also 
implemented by using R

2
D [13]. 

Multi-Objective Optimization 

 As seen before, the desirability function condenses a 
multivariate optimization problem into a univariate one. 
Thus, the overall desirability D can be maximized over the 
independent variables domain by means of the simplex 
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method of function optimization. The final result is to find 
the optimal levels (or an optimal range) of the independent 
variables that optimize simultaneously the k responses 
determining the final quality of the product. In this way, the 
best possible compromise between the k responses is found, 
and consequently, the highest overall desirability for the 
final compound is reached (i.e., the more enviable drug 
candidate). 

Phase II: Desirability-Based Ranking Algorithm 

 A ranking algorithm based on quantitative parameters 
estimated from the description of the cases is applied [15]. 
Specifically, by the application of this algorithm, it will be 
possible to rank drug candidates (included on the model’s 
applicability domains) with unknown pharmaceutical 
profiles (like those coming from combinatorial libraries) 
according to their similarity with the optimal drug candidate 
determined by the simultaneous multi-objective 
optimization process previously described. 

Similarity Assessment  

i is the parameter used here to describe the similarity 
between a case i and the optimal case as a function of the 
subset of descriptive variables used for the multi-objective 
optimization process, which is defined as: 

=

=

m
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XXii w
1

,
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where i,X is the Euclidean distance between the case i and 
the optimal case, considering the parameters X, and wX 

represents the weight or influence of the variable X over the 
global desirability D of the case i. 

 Desirability scaling of similarity metrics and 
minimization of differences between case description ( i) 
and case solution (Di). The i values are normalized by 
means of the application of the Derringer desirability 
functions [49] to bring them to the same scale as Di. In this 
manner, it is possible to minimize the difference between 
the values of i and Di for every case. Specifically, the 
respective values of i are minimized by means of eq.4 in 
such a way that the lower values (indicative of a higher 
similarity with respect to the optimal case) will take the 
values more close to 1 and vice versa. Here, Li correspond 
to the lowest value of i ( iMIN) and Ui = iMAX. 

 Next, the optimal set of weighs wX minimizing the 
difference between the values of Di and the normalized 
values of i for every case is found by a least-squares 
nonlinear data-fitting process. The weights were obtained 
through a nonlinear curve-fitting using the large-scale 
optimization algorithm [64, 65], implemented in the 
“lsqcurvefit” function of MATLAB [66]. 

 By minimizing the differences between Di and the 

normalized values of i, we achieved the highest possible 
degree of concordance between the description (expressed 

through the normalized values of i which encode the 

information related to the molecular structure expressed as a 
function of the molecular descriptors employed) and the 

solution of the cases (determined by the respective values of 

Di, which represents the combination of the k properties 

involved on the final quality of the drug candidate). Thus, it 

will be possible to rank, according to i, new and 
pharmaceutically unknown drug candidates for whom just 

their molecular structure is known. In this way, it will be 

possible to filter and identify the most promising drug 
candidates, which will logically be placed first on the 

ordered list (the candidates with the lowest values of i and 

consequently the most similar ones with the optimal drug 
candidate determined by the desirability-based MOOP 

process) and to discard the candidates ordered last. 

Ranking Algorithm Validation and Estimation of the 
Ranking Quality Index ( ) 

A method for the validation of the ranking obtained by 

the use of the optimal set of weighs is proposed as well as a 

quantitative criterion of the quality of a ranking.  

 We will use some simple notations to represent ordering 

throughout this work. Without loss of generality, for n cases 

to be ordered, we use the actual ordering position of each 
case as the label to represent this case in the ordered list. 

For example, suppose that the label of the actual highest 

ranked case is n, the label of the actual second highest 
ranked case is n - 1, etc. We assume the examples are 

ordered incrementally from left to right. Then the true-

order list is OT = 1, 2, 3, ...,n. For any ordered list 
generated by a ranking algorithm, it is a permutation of OT. 

We use OR to denote the ordered list generated by the 

ranking algorithm R. OR can be written as a1, a2, ..., ai, 
where ai is the actual ordering position of the case that is 

ranked ith in OR. 

The ranking validation includes the following steps: 

i). Order the cases in the library according to D in a 

decreasing fashion and label each case as described 
above (1, 2, 3, ...,n). This ordering corresponds to the 
true-order list (OT). 

ii). Invert OT. This new ordering corresponds to the worst 

order list (OW). 

iii). Order incrementally the cases in the library according 
to i and label each case as described above (a1, a2, 
...,an). This ordering corresponds to the order 

generated by the ranking algorithm R (OR). 

iv). Normalize (through eq.4) the values (labels) assigned 
to each case in steps 1-3 where Li = Ti = 1 and Ui = the 
number of cases included in the library (n). In this 

way, we obtained the respective normalized order 
values for the true (

OT
di) and worst (

OW
di) order lists, as 

well as the order generated by the ranking algorithm R 
(

OR
di). 

v). Use the respective normalized order values to 
determine the difference between OR and OT (

OT-OR
i) 

i

OR

i

OT

i

OROT dd=
                                         

(6) 

and between OW and OT (
OT-OW

i) 
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vi). Estimate the quality of the order generated by the 
ranking algorithm R (OR) by means of the ranking 
quality index ( ), which can be defined as the absolute 
value of the mean of 

OT-OR
i, for the n cases included in 

the library to be ranked: 
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After applying a correction factor 
OW

F =
2

 to  we 

obtain the corrected ranking quality index (
*
): 
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n

i

i
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n
=

=
21*
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where 
OW

 is the quality index for the worst ranking. F is 
used here to obtain a more representative indicator of the 
quality of a ranking and at the same time to include  in the 
range [0, 1].  

 Finally, it is possible to express 
*
 as the percentage of 

ranking quality (R%). 

100)1( *

% =R                                               
(10) 

 Fig. (2) summarizes schematically the use of the 
MOOP-DESIRE methodology as a computer-aided tool for 
multi-objective drug discovery. 

DESIRABILITY-, WSOF-, AND PARETO-BASED 

MOOP METHODS 

 From the above detailed we can note that MOOP-
DESIRE methodology like WSOF-based MOOP methods 
reformulates a multi-objective problem into a single one 
(the overall desirability). The rationale is to find a single 
“best” solution overlooking however the presence of a 
Pareto-front of objectives, which represents the main 
drawback of both methods when compared with Pareto-
based methods. 

 Actually, the major drawback of WSOF-based methods 
is the selection of the most appropriate weightings because 
it is often not clear how the different objectives should be 
ranked. In addition, the method is limited in its ability to 
find solutions to problems involving competing objectives 
[37]. The MOOP-DESIRE methodology has the advantage 
of transforming the responses (objectives) into desirability 
di values, which are then combined into the single overall 
desirability D. So, competing objectives like potency and 
toxicity can be successfully handled by this method because 

the use of weights is avoided in the multi- to single 
objective problem reformulation [49]. 

 A drawback of the Pareto-based MOOP methods is that 
the distribution of the Pareto-front may lead solutions to 
drift to more densely distributed regions of the surface and, 
in more extreme circumstances, lead to dictatorship 
conditions where a single objective dominates [37]. The use 
of the overall desirability values avoids this problem since 
they provide the overall assessment of the combined 
response (objective) levels. 

 The main drawback of the proposed MOOP-DESIRE 
methodology is related to the modeling technique used to fit 
the initial set of PMs. Since the optimization process over 
the independent variables domain is based on a MLR 
approach, neither the predicted responses nor the optimum 
levels of each independent variable that determines the 
predicted overall desirability will be reliable if the 
parametric assumptions inherent to regression techniques 
are not fulfilled [63, 67]. Specifically, the effect of potential 
non-linear relations between descriptors and objectives 
could lead to very poor predictions and consequently to 
very unreliable structure-desirability relationships. The 
combination of non-linear modeling techniques such as 
machine learning algorithms with evolutionary optimization 
methods can be a solution to this bottleneck on the 
application of desirability based-MOOP methods. 

 Although perfectible, MOOP-DESIRE methodology has 
been successfully applied to key drug discovery tasks, 
which will be summarized from now on. 

MULTI-OBJECTIVE DRUG DESIGN 

 MOOP-DESIRE methodology has proved to be a 
practical tool for the theoretical design of new drug 
candidates with several biological properties simultaneously 
optimized. That is, not only to be able to translate the 
chemical structure into numbers to find out which are 
significantly related with a specific property, but in 
addition, to go back from these numbers to structure, or at 
least to some clues suggesting the structural modifications 
required to improve that property, or even better, more than 
one property at once. 

 Design of novel NSAIDs quinazolinones with 
simultaneously improved analgesic, antiinflammatory, and 
ulcerogenic profiles. MOOP-DESIRE methodology was 
applied to a library of fifteen 3-(3-methylphenyl)-2-
substituted amino-3H-quinazolin-4-one compounds [68] in 
order to design novel NSAIDs quinazolinones with high 
analgesic (An) and anti-inflammatory (Aa) activities while 
keeping their ulcerogenic (U) ability as low as possible 
[13]. The use of such small and homogeneous data set is 
more suitable for later stages of the drug development 
process once identified a lead rather than for early stages. 
Actually, specific structural modifications can be made over 
the lead according to the results of the optimization process. 
For this, the use of clearly defined structural or 
physicochemical descriptors can led to interpretable 
structure-desirability relationships which can be used to 
design new candidates with an improved overall 
pharmaceutical profile. 
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Fig. (2). MOOP-DESIRE-based rational drug discovery and development. 
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 So, the simultaneous optimization of the analgesic, anti-
inflammatory and ulcerogenic properties for the set of 
compounds was conducted by using as evaluation functions 
the best linear models relating each property to the atom 
centred fragments (ACF) molecular descriptors [69]. The 
models were good in both statistical significance and 
predictive ability. Good overall quality of the models is 
revealed by a satisfactory goodness of fit (values of the 
coefficient of determination (R

2
) ranging from 0.803 to 

0.935); as well as internal predictivity (Q
2
 values between 

0.713 and 0.905). 

 Moreover, the high Q
2

D value (0.905) provides an 
adequate level of reliability of the method in predicting the 
overall desirability D. 

 Previous to the simplex optimization of the overall 
desirability D, the desirability function specifications were 
applied to each property accordingly (see Table 1).  

 

Table 1. Desirability Functions Specifications. OPT: Type of 

Optimization Task; DES: Desirability Function 

Applied; Li: Lower Bound; Ui: Upper Bound; Ti: 

Target; 
[a] 

Ulcerogenic Index of Aspirin Used as 

Ulcerogenic Reference Drug. 

Response OPT DES Li Ui Ti 

An(%) Max. eq.3 25 100 100 

Aa(%) Max. eq.3 25 100 100 

U Min. eq.4 0 1.73[a] 0 

 
 The optimization of the overall desirability was carried 
out to obtain the levels of the ACF descriptors that 
simultaneously produce the most desirable combination of 
all properties. 

 Fig. (3) shows the multiple response overall desirability, 
as well as the individual desirability functions determined 
by the respective pairs of predictor variables included on 
the three MLR models. The data reveal that a 3-(3-
methylphenyl)-2-substituted amino-3H-quinazolin-4-one 
optimized candidate can have analgesic and anti-
inflammatory activities of 93.43% and 82.04%, 
respectively, plus an ulcerogenic index of 0.44. This 
represents an overall desirability of 0.8; that can be attained 
if the quinazoline scaffold is modified with a substituent on 
C2 position characterized by the concurrent presence of five 
methyl groups (C-001 = 5) and twelve hydrogen atoms 
attached to a sp

3
 carbon no heteroatom attached to another 

carbon (H-046 = 12) while avoiding the presence of 
heteroatoms attached to a sp

2
 carbon atom linked to the 

aromatic side ring (C-037 = 0). 

 The information obtained suggest a positive role of the 
bulkiness of the alkyl substituents on the C-2 position of the 
quinazoline ring on the ulcerogenic properties while 
keeping or improving the analgesic and anti-inflammatory 
activities. The significant slope of the C-001 curve (see 
Fig. (3)) suggests that more attractive candidates could be 

designed with C2 substituents having more than five methyl 
groups. For a better understanding of this descriptor-to-
chemical structure translation see Fig. (4). 

 Based on the previous analysis, a new set of nine 3-(3-
methylphenyl)-2-substituted amino-3H-quinazolin-4-one 
optimized candidates was designed in which several alkyl 
substituents with different degree of bulkiness were linked 
to the C-2 position of the quinazoline ring. Chemical 
modifications and predicted values of the expected 
pharmaceutical properties are shown in Table 2. The 
leverage values obtained for each new designed candidate 
were also considered to check whether or not each new 
candidate falls within the applicability domain of the 
original PMs. 

 In summary, a remarkable simultaneous improvement 
on the analgesic and anti-inflammatory activities plus 
ulcerogenic profile of the new designed candidates was 
obtained throughout MOOP-DESIRE methodology. 

 An important topic in this methodology is the space of 
MDs (X1,X2,.,Xn) used for building QSAR equations. If the 
equations are simple (minimal number of MDs), the MDs 
included on each equation are chemically and/or 
biophysically interpretable, and all the equations share the 
same or a highly similar set of MDs; the final interpretation 
and consequently the molecular design becomes easy and 
transparent, as was the case in [13]. However, on the 
contrary and more probable case where each property is 
explained as a function of multiple and hard to interpret 
different subsets of MDs, the final interpretation turns out to 
be (as best) highly complicated. This limitation was 
addressed by Machado et al. by the application of a variant 
of the MOOP-DESIRE methodology where the overall 
desirability derived from experimental property values was 
considered as the target response [18].  

Design of selective arylpiperazine derivates for the 5-HT1A 
serotonin receptor. The purpose was to facilitate the design 
of new arylpiperazine anti-depressive - and/or anti-anxi ty 
agents [70-73] more selective for the 5-HT1A receptor with 
respect to 5-HT2A subtype intended to diminish the 
psychoactive and/or hallucinogenic adverse effects resulting 
from the undesired interaction with 5-HT2A receptor [74-
78]. 

 By using this variant the approach was reduced to a 
single QSAR equation independent of the number of initials 
responses (targets); consequently, the errors involved in the 
methodology could be minimized and the descriptor space 
to interpret was significantly reduced from ten MDs (five 
for each response) with the original MOOP-DESIRE 
methodology, to five MDs with the variant proposed. Both 
approaches exhibited similar predictabilities in estimating 
overall desirability values as well as an agreement with the 
available pharmacophore descriptions [79, 80]. 

 It is important to note that the single model in the 
variant proposed by Machado et al. was dimensionally 
smaller but mostly composed by MDs with a difficult 
chemical translation/interpretation, limiting the 
corresponding results for molecular design. However, an 
elegant solution was proposed by the authors and 
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Fig. (3). Multiple response desirability function due to the analgesic activity, anti-inflammatory activity and ulcerogenic 
index D(An-Aa-U) (last row), along with the individual desirability functions coming from the pairs of predictor variables 
included on the three MLR models(first three rows). 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

Fig. (4). Atom-Centered Fragments (ACF) descriptors for a 3-(3-methylphenyl)-2-substituted amino-3H-quinazolin-4-one 
compound. 
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Table 2. Computed ACF Descriptors (C-001, C-037 and H-046), Predicted and Leverage (h) Values for the Analgesic (An) and 

Anti-Inflammatory (Aa) Activities, plus the Ulcerogenic index (U) of the Nine New Designed Compounds. *Compounds 

out of the Predictions Model’s Applicability Domain; Leverage Values Greater than a Critic Leverage (h*) are Marked 

in Bold. 

3-(3-methylphenyl)-2-substituted amino-3H-quinazoline-4-one 

N

N

NH

N
R

O

 

Compound R C-001 C-037 H-046 Anpred Aapred Upred h(An) h(Aa) h(U) 

ASNEW1 
 

3 0 11 77% 70% 0.55 0.216 0.361 0.216 

ASNEW2 

 

3 0 13 77% 72% 0.55 0.216 0.496 0.216 

ASNEW3 
 

4 0 12 85% 77% 0.49 0.403 0.453 0.403 

ASNEW4
*
 

 

5 0 15 93% 86% 0.44 0.573 0.614 0.573 

ASNEW5
*
 

 

6 0 18 102% 96% 0.38 0.695 0.724 0.695 

ASNEW6
*
 

 

7 0 21 110% 106% 0.33 0.777 0.796 0.777 

ASNEW7 
 

4 0 9 85% 72% 0.49 0.403 0.401 0.403 

ASNEW8 
 

5 0 12 93% 82% 0.44 0.573 0.562 0.573 

ASNEW9
*
 

 
5 0 15 93% 86% 0.44 0.573 0.614 0.573 

 

effectively applied to drug design. The solution was 
essentially based on the examination of the correlation 
matrix between “hard to interpret” MDs included in the 
model and ‘‘interpretable ones’’ as a way to understand 
predictive but hard to interpret models for future design. 
Results showed that model descriptors were strongly related 
to the principal factors involved in 5-HT receptors 
selectivity and affinity (flexibility, molecular weight, 
aromatic substructure and atom type involved in the 
aromatic substitution). 

 Specifically, higher values of desirability were related 
with molecules without H-donor groups or halogen atoms 
and with electronic density close to the benzene ortho 
substitution position in agreement with the principal 
pharmacophore aspects associated with 5-HT1A receptor. 
This information allowed the design of a new set of 25 
arylpiperazine candidates with a selective interaction profile 
over 5-HT1A receptor. Among the 25 candidates two 
molecules were highlighted due to their potentially selective 

capabilities. These two selective candidates with 80–94% 
desirability values and highest differences between receptor 
affinities (pK1A and pK2A) values are shown in Fig. (5). 

 Desirability theory has been also applied, instead for 
multi-objective optimization, as a tool for the interpretation 
of multi-objective prediction models [11]. That is, instead 
of running a simultaneous optimization task over multiple 
properties of interest for drug discovery, such properties are 
directly combined into an overall desirability value 
(representing the compromise between the properties 
determining their pharmaceutical profile), predicted as a 
linear function of multiple molecular descriptors, and such a 
relationship is profiled in order to extract useful information 
on the desired trade-offs between those properties. 

 Extracting useful information on the desired trade-offs 
between binding and relative efficacy of N6-substituted-4´-
thioadenosines A3 adenosine receptor agonists. Desirability 
theory was used as a tool to extract useful information on 
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the desired trade-offs between binding and relative efficacy 
of N

6
-substituted-4´-thioadenosines A3AR agonists [11]. In 

doing so, were used the binding affinities (KiA3) and relative 
maximal efficacy (REA3) in the activation of the A3AR 
reported by Jeong et al. [81] for a library of thirty two N

6
-

substituted-4´-thioadenosines A3 adenosine receptor 
(A3AR) agonists. 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

Fig. (5). 5HT1A serotonin receptor selective arylpiperazine 
ligands designed by Machado et al. 
 
 Once desirability scaled both KiA3 and REA3 responses 
for each compound, the corresponding overall desirability 
(DKiA3-REA3) values were derived. In order to identify the 
factors governing the trade-offs between binding affinity 
and efficacy of this family of A3AR agonists, the combined 
response DKiA3-REA3 was mapped as a function of four simple 
1D MDs with a direct structural and/or physiochemical 
explanation. The resulting model was statistically 
significant and predictive with values of R

2
 and Q

2
 about 

0.8 and 0.6, respectively. 

nCs

ARRnCIR

ALOGP2

±

±±+

±±=

)027.0(092.0

)595.0(783.2)033.0(203.0

)013.0(107.0)292.0(557.133 REAKiAD

 
(11)

 

 According to the model regression parameters, the most 
influencing descriptor is the aromatic ratio (ARR) which is 
the fraction of aromatic atoms in the hydrogen suppressed 
molecule graph and encodes the degree of aromaticity of 
the molecule. 

 The second most influencing descriptor is the number of 
circuits (nCIR), a complexity descriptor which is related to 
the molecular flexibility and serves as a measure of rigidity 
with higher numbers of circuits corresponding to reduced 
flexibility. Finally, following nCIR in order of influence 
over DKiA3-REA3 are the square of the Ghose-Crippen octanol 

water coefficient ((ALOGP2) which encodes the 
hydrophobic/hydrophilic character of the molecule; and 
nCs, a constitutional descriptor accounting for the number 
of secondary sp

3
 carbon atoms in the molecule. 

 According to the model, a molecule with a low 
aromaticity degree, without secondary sp

3
 carbon atoms, 

and containing cyclic and rigid N
6
 substituents which 

contributes to reduce the hydrophobicity of the system 
could favor the balance of the binding affinity and relative 
efficacy profiles of N

6
-substituted-4´-thioadenosine A3AR 

agonists. These conclusions, although derived from a 
simple 1D model, were very similar to that obtained by 3D-
CoMFA/CoMSIA approaches [82]. Kim and Jacobson have 
concluded that a bulky group, conformationally restricted, 
at the N

6
 position of the adenine ring will increases the 

A3AR binding affinity, and that a small bulky group, at this 
position, might be crucial for A3AR activation. 

 Although useful, this information was incomplete since 
it is well-known that steric factors are determinant for the 
design of A3AR agonists, especially for binding affinity 
[82]. Consequently, it is found to be important to determine 
the optimal size of the conformationally restricted cyclic N

6
 

substituent. Unfortunately, the simple inspection of the 
regression parameters of the PM did not offers this 
information. In consequence, the behavior of DKiA3-REA3 was 
profiled at the mean values of the four MDs rather than 
looking for their optimal values (see first row in Fig. (6)). 
Accordingly, it was possible to find the levels of the MDs 
simultaneously producing the best possible DKiA3-REA3 in the 
training set employed. 

 The analysis revealed that for the most favorable 
balance of binding affinity and agonist efficacy: the ARR 
should be not just low but near to 0.4; ALOGP2 should be 
as low as possible; the number of secondary sp

3
 carbon 

atoms should be kept around two; and nCIR should be not 
just high but close to six. At the same time, considering that 
the nCIR value of the thioadenosine nucleus is four, one can 
deduce that the ideal nCIR value of the N

6
 substituent 

should be two. This information can be structurally 
translated into bicyclic N

6
 type of substituents. 

 The inclusion in the PM of nCIR, instead of the number 
of rings in the chemical graph (nCIC) is also significant. 
Although the structural information of this pair of MDs is 
very similar, their graph-theoretical information is quite 
different. While nCIC encodes the number of rings, nCIR 
includes both rings and circuits (see Fig. (7)). So, additional 
information can be inferred: the bicyclic N

6
 substituent 

should not be fused. 

 This result matches with previous experimental findings 
on the structure-activity relationship (SAR) of this family of 
thioadenosine derivatives [81]. The SAR obtained for this 
family suggests that compounds with bulky N

6
 substituents 

lost their binding to the A3AR. Paradoxically, among 
compounds showing high binding affinity at the human 
A3AR, two compounds substituted with a N

6
-(trans-2-

phenylcyclopropyl) amino group were found to be full 
agonists at the human A3AR. In addition, it was found that 
compounds with -naphthylmethyl N

6
 substituents (fused 

bicyclic substituents) lost their binding to the A3AR [81]. 

HN

O

N

N

O

HN
CH3

5

HN

O

N

N

O

HN
CH3

5

CH3

pK1A = 8.58 / pK2A = 5.06

pK1A = 8.78 / pK2A = 4.96
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Fig. (6). Desirability profiling of the levels of the MDs that simultaneously produce the most desirable combination of 
binding affinity and relative efficacy of N

6
-substituted-4´-thioadenosine A3AR agonists. 

 

 
 

 

 
 

 

 

 

 

 
 

 

Fig. (7). Graphical illustration of the definition of nCIC and nCIR for two chemical graphs. 
 

 From the study it was also concluded that bulky N
6
 

substituents only affects the binding affinity, however bulky 
not fused bicyclic substituents such as a trans-2-
phenylcyclopropyl group, could be beneficial for agonist 
efficacy without lost their binding affinity. Although that 
experimental study does not deal with the simultaneous 
analysis of both properties, their experimental findings 
properly matched with theoretical results. 

MULTI-OBJECTIVE LIBRARY RANKING 

 The MOOP-DESIRE methodology can also be applied 
to handle larger and/or more diverse data sets, such as those 
frequently obtained in High-Throughput Screening 
processes, being there more appropriate for early stages of 
the drug development process. That is, molecules coming 
from large and heterogeneous data sets can be ranked and 
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filtered according to a certain criterion rather than applying 
the results of the optimization process to design new 
candidates. To accomplish that, one can resort to the overall 
desirability of each molecule as a ranking criterion or to 
several distance measures between the optimal values of the 
descriptors determined by MOOP-DESIRE and the 
computed values of the descriptors. In this case, it is 
advisable to use descriptors leading to highly predictive 
structure-desirability relationships rather than interpretable 
descriptors in order to ensure the accuracy of the 
predictions and therefore, an accurate assessment of the 
molecule’s overall desirability. The suitability of the 
MOOP-DESIRE methodology as a multi-objective library 
ranking algorithm was evaluated on a library of 95 
fluoroquinolones [83]. It was done with the aim of optimize 
simultaneously their antibacterial activity over gram-
negative microorganisms (MIC) and their cytotoxic effects 
over mammalian cells (IC50) and use these results as a 
pattern for a multi-objective ranking algorithm [15]. 

 Filtering safe and potent antibacterial candidates from 
a heterogeneous library of antibacterial fluoroquinolones. 
The best linear models relating each property to the 
DRAGON molecular descriptors were good in both 
statistical significance and predictive ability, and the overall 
desirability function exhibits good statistical quality as 
indicated by the R

2
D values ~0.7. Moreover, a Q

2
D value of 

0.63 provides an adequate level of reliability on the method 
in predicting D. 

 In order to obtain candidate(s) with high antibacterial 
potency (MIC) and low cytotoxicity (IC50) the optimization 
of the overall desirability was carried out to obtain the 
levels of the descriptors included in the PMs that 
simultaneously produce the most desirable combination of 
the properties. Once found, the resulting optimal vector of 
MDs was used as a pattern to rank the library of 
flouroquinolones. Through a nonlinear curve-fitting process 
implemented in MATLAB were found the optimal set of 
weights wi required to minimize the differences between 
descriptions ( i) and solutions (Di) in the library of 
compounds to rank. Next, i was used as a ranking 

criterion. Based on i was possible to reach a ranking of the 
flouroquinolones library with a corrected ranking quality 
index ( *) of 0.313 representing a percentage of ranking 
quality (R%) of 68.7. This ranking compared with the 
perfect ranking is shown in Fig. (8). 

 The quality of the ranking attained (R% = 68.7) was 

similar to the predictability values exhibited in the PMs as 

well as in the MOOP process (Q
2
(MIC) = 0.693, Q

2
(IC50) = 

0.686, Q
2

D(MIC-IC50) = 0.629) which indicates that the quality 

of both process (desirability-based MOOP and ranking) are 

strongly dependent of the quality of the initial set of PMs. 
In addition, the similarity exhibited between these values 

suggests that the ranking algorithm reflects the quality of 

the PMs and the MOOP process in which it is based. 

MULTI-OBJECTIVE VIRTUAL SCREENING 

 Filtering the most promising candidates having the best 

compromise between several properties comprising the final 

pharmaceutical profile confers to the process of discovery 
and development of new drugs an elevated degree of 

rationality which is difficult to reach via traditional QSARs 

which optimize sequentially each property. The sequential 
optimization of the properties comprising the final 

pharmaceutical profile of a drug candidate implies to 

overlook at some stage properties equally decisive to reach 
a successful drug or, at least, to find only by chance a 

candidate with acceptable profiles of all properties 

simultaneously. 

 That is, a potent candidate once identified via QSAR has 

a high probability of being discarded later as a drug because 

of an unacceptable toxicological profile with the useless 
expenses of time and resources in synthesis and 

pharmacological assays [84]. Equally difficult is the choice 

of using a panel of models (i.e.: a parallel screening based 
on QSAR models to respectively map the therapeutic 

efficacy and toxicity) since it is not very probable to find a 

candidate with all the properties simultaneously optimized 
and if this happens the results are more by chance than fruit 

of a rational drug development strategy. 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

Fig. (8). i-based ranking of the fluoroquinolone library. 
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 MOOP-DESSIRE methodology was used as a rational 
strategy of multi-objective virtual screening to prioritize 
HIV-1 non nucleoside reverse transcriptase inhibitors 
(NNRTIs) with acceptable trade-offs between the inhibitory 
efficacy and toxicity towards MT4 blood cells [19]. A 
retrospective analysis of the training set, based on well-
known enrichment measures [85-87], was conducted 
allowing comparing the performance of several VS 
approaches. The performance of this multi-objective VS 
strategy to retrieve pharmaceutically acceptable NNRTI 
candidates from a pool of NNRTI decoys was also tested. 

 Prioritizing hits with appropriate trade-offs between 
HIV-1 reverse transcriptase inhibitor efficacy and MT4 
blood cells toxicity. The main goal in a VS effort is to select 
a subset from a large pool of compounds (typically a 
compound database or a virtual library) and try to maximize 
the number of known actives in this subset. That is, to select 
the most “enriched” subset as possible. 

 Several enrichment metrics have been proposed in the 
literature to measure the enrichment ability of a VS protocol 
[85, 86]. In this work, we use some of the most extended. 

 Based on the analysis of the receiver operating 
characteristic (ROC) curve [86] it is possible to derive the 
area under the ROC curve (ROC Metric) [85], as well as the 
ratio of true positive (TP) cases and false positive (FP) 
cases found at the operating point of the ROC curve 
(TP/FPROC-OP) [88]. 

 From the accumulation curve we can deduce enrichment 
from the area under the curve (AUAC) [85], from the yield 
of actives (Ya) at certain filtered fractions (i.e.10%), as well 
as from the fraction of the database that has to be screened 
in order to retrieve a certain percentage (100%) of the TP 
cases (screening percentage, 100%). 

 On the other hand, the enrichment factor (EF) takes into 
account the improvement of the hit rate by a VS protocol 
compared to a random selection. 

N
N

n
TP

EF
+

=                                                    (12) 

where TP is the number of true positive cases retrieved, n 
the number of selected cases, N and N+ are the total number 
of cases, and the number of positive cases in the library, 
respectively [85]. 

 The suitability of a multi-objective VS approach can be 
checked by comparing the enrichment achieved in the 
screening of NNRTI candidates with a favorable 
pharmaceutical profile from the full set of 122 NNRTI 
compounds, sequentially considering the inhibitory efficacy 
(the predicted values of logIC50) and safety (the predicted 
values of logCC50) profiles in opposition to use the 
pharmaceutical profile information (predicted values of 
overall desirability DIC50-CC50). 

 When the screening was conducted in a sequential 
manner, starting with the selection of candidates fulfilling a 
previously established threshold for the inhibitory efficacy 

and further eliminating those candidates with an 
unfavorable safety profile, the area of selected candidates is 
reduced. As a consequence, 41% of the candidates with 
favorable pharmaceutical profiles are mistakenly discarded 
(see Fig. (9A)). However, by considering the compromise 
between inhibitory efficacy and safety of the candidates 
through multi-objective VS (Pred.DIC50-CC50  0.5) is 
possible to retrieve up to 88% of the candidates with 
acceptable pharmaceutical profiles included on the library 
(see Fig. (9B)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Graphical representation of the results for (A) a 
sequential screening [based on the inhibitory efficacy 
(Pred. logIC50) and safety (Pred. logCC50) profiles], and 
(B) a multi-objective screening [based on the 
pharmaceutical profile (Pred.DIC50 CC50)], of the full set of 
122 NNRTI compounds. 
 
 
 This reveals the importance of considering multiple 
properties simultaneously since the sequential application of 
property filters could have led to the elimination of the 
candidate, despite it having a good balance between most of 
the properties [89]. The importance of achieving a balance 
across a range of criteria is also recognized by other groups 
[90]. 

 Finally, was evaluated the ability of the multi-objective 
VS strategy proposed to prioritize NNRTI candidates with 
favorable pharmaceutical profiles (DIC50-CC50  0.5) disperse 
in a data set of NNRTI decoys. 

 NNRTI decoys are physically similar but chemically 
distinct from NNRTIs, so that they are unlikely to be 
binders of the HIV reverse transcriptase. The 12 HIV RT 
known ligands with favorable pharmaceutical profiles 
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included on the validation and test sets were used as 
positive cases, while 36 decoys (negative cases) for each 
known ligand (432 decoys in total) were randomly selected 
from the database of HIV RT decoys included on the 
directory of useful decoys (DUD) [91]. 

 The final set of 444 compounds was ranked according to 
their structural similarity ( i) with the previously 
determined optimal candidate, and the enrichment ability of 
this strategy was finally tested according to the well known 
enrichment metrics and now depicted in Table 3. 

 

Table 3. Enrichment Metrics for i-based Ranking of the 

Data Set Collected form DUD 

ENRICHMENT METRICS 

ROC Curve Information 

ROC Metric 0.798 

TP/FPROC-OP 0.833/0.215 

Accumulation Curve Information 

AUAC 0.828 

100% 0.320 

Ya10% 0.333 

Enrichment Curve Information 

EF10% 3.364 

EFMax 3.592 

 
 The respective values of AUAC and ROC Metric 
obtained suggest that the method is able to rank a NNRTI 
candidate with a favorable pharmaceutical profile earlier 
than a NNRTI decoy with a probability around 0.8. At the 
same time, TP/FPROC-OP informs that, to obtain the best 
performance is necessary to filter 23.2 % of the library, in 
turn leading to find 83.3% of the TP cases at a cost of only 
21.5 % of FP cases, which represents a EFMAX = 3.592. 
Furthermore, all the positive cases can be found at the first 
32% of the library. On the other hand, a third of the 
compounds retrieved, after filtering the top 10% of the 
library, were NNRTI candidates with a favorable 
pharmaceutical profile (Ya10% = 0.33), which represents an 
EF10% = 3.364, being 10.09 the maximum possible value of 
EF for this data fraction.  

 So, considering the previous results, one may well 
expect that larger (real or virtual) libraries of molecules 
(always inside the applicability domain of the PMs), like 
combinatorial libraries, could be correctly ranked; prioritizing 
in this way those candidates (top ranked) with more favorable 
compromise between inhibitory efficacy and safety. 

CONCLUDING REMARKS 

 In this paper, we reviewed the MOOP-DESIRE 
methodology, a desirability-based multi-objective QSAR 
method for the joint handling of multiple properties of 

interest in drug discovery. Their suitability for key tasks 
involving the use of chemoinformatics methods in 
medicinal chemistry and drug discovery was exposed. 
Overall results attained in drug design, library ranking and 
virtual screening tasks allows suggesting that the 
identification of hits with appropriate trade-offs between 
potency and safety, rather than fully optimized hits solely 
based on potency, can facilitate the hit to lead transition and 
increase the likelihood of the candidate to evolve into a 
successful drug. So, it is apparent that MOOP-DESIRE 
methodology can play an important role in the difficult task 
of reducing the size of that haystack that is the chemical 
space and hence speeding and rationalizing the drug 
discovery process. 
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